Actionable Patient Safety Solutions (APSS) #3C: Severe hypoglycemia

How to use this guide
This guide gives actions and resources for creating and sustaining safe practices for severe hypoglycemia. In it, you’ll find:

Executive summary checklist.. 120
What we know about severe hypoglycemia 121
Leadership plan... 122
Action plan .. 122
Technology plan ... 124
Conflicts of interest disclosure.. 125
Workgroup .. 125
References ... 126
Appendix A: Summary of Foundational Best Practices (Moghissi et al., 2009) .. 127
Appendix B: Just Do Its! recommendations (Milligan et al., 2014) .. 128
Appendix C: Start Now: U-500 regular insulin project ... 128
APSS #3C: Severe hypoglycemia

Executive summary checklist

Severe hypoglycemia (SH) is defined as having a low blood glucose level of less than 40 mg/dL and is likely to cause harm to the patient in an inpatients setting (Schwartz et al., 2007). SH causes significant morbidity and occasional mortality in hospitalized patients.

Create an action plan

☐ Get commitment to reduce SH from hospital administration and medical leadership
☐ Create a multidisciplinary team that includes physicians, pharmacists, nurses, diabetic educators, medication safety officers, case managers, and long-term healthcare professionals
☐ Create a systematic approach to reduce SH and use universal best practices

Ensure best patient care

☐ Educate staff, patients, and caregivers about the early warning signs and symptoms of SH
☐ Create a system to identify patients taking anti-diabetic medications (sulfonylureas, insulins, etc.) in the Electronic Health Record (EHR)
☐ Create insulin order sets that can be modified to reduce risks of hypoglycemia
☐ Coordinate glucose monitoring, automate insulin dose calculations, insulin administration, and meal delivery during changes of shift and times of patient transfer from one unit to another

Engage staff and use data to find areas for improvement

☐ Use real-time surveillance methods, analysis tools, and point-of-care blood glucose (BG) monitoring and reporting systems
☐ Continuously monitor the incidence of SH in the hospital, long-term care and skilled nursing facility settings
☐ Use the results of this monitoring in staff education as a part of Continuous Quality Improvement (CQI)
☐ Raise institutional awareness of issues through a system that compares the healthcare facilities and nursing units based on performance quality scorecards
What we know about severe hypoglycemia

SH can cause cardiac arrhythmias, seizures, brain damage and death (Griffing, 2016). It is a preventable harm, and addressing it can help create a safety culture, which is a culture that promotes patient safety and quality of care while reducing preventable risks and harm. While hypoglycemia (low blood sugar) is a common problem for many patients with diabetes, it can also occur in non-diabetics in a healthcare setting. In a 2009 survey of 575 hospitals, 5.7% of all point-of-care BG tests showed hypoglycemia (<70 mg/dL) tests (Swanson et al., 2011). Causes of hypoglycemia for patients include:

- Too much insulin dose
- Inappropriate timing of insulin or anti-diabetes therapy
- Unaddressed previous hypoglycemia
- Changes in nutritional status and regimen
- Renal and hepatic function changes
- Steroid dose (Deal et al., 2011)
- Failure to monitor BG
- Ineffective communication between physicians, pharmacists, and nurses and other healthcare providers

The diverse nature of potential errors in the treatment of inpatients with SH supports the need for a decision-making model that can be used to predict and prevent SH episodes and improve overall patient safety and outcomes. Research has found that:

- Frequent hypoglycemia is related to increased disease, length of stay, and death, especially in the intensive care units (Elliott, Schafers, McGill and Tobin, 2012)
- Moderate and SH are strongly linked to increased risk of death, especially from distributive shock (NICE-SUGAR Study, 2012) through:
 - Impairment of autonomic function
 - Changes in blood flow and composition
 - White cell activation
 - Vasoconstriction
 - Release of inflammatory mediators and cytokines (Adler et al., 2008; Wright and Frier, 2008)
- Clinicians do not consistently adjust their patient’s anti-diabetic regimens after treatment of hypoglycemia (Boucai, Southern, and Zonszein, 2011; DiNardo, Noschese, Korytkowski, and Freeman, 2006)

Preventing SH

Early recognition and management of mild hypoglycemia can prevent SH. For example, adjusting the patient’s anti-diabetic regimens after treatment of hypoglycemia, or place the anti-diabetic medication on hold if the patient is not eating.
Leadership plan

Hospital governance, senior administrative leadership, clinical leadership, and safety/risk management leadership need to work collaboratively to reduce SH.

To achieve a goal of zero preventable deaths, leaders need to commit to taking these key actions.

Show leadership’s commitment to preventing SH

- Create a plan to prevent SH that includes the areas of change outlined in the National Quality Forum Safe Practices for Better Healthcare, including awareness, accountability, ability, and action (National Quality Forum, 2010)
- Clinical and safety leadership should endorse the plan and ensure use across all providers and systems
- Hospital governance and senior administrative leadership (medical, pharmacy, and nursing) must fully understand the safety issue in their own healthcare system

Create the infrastructure needed to make changes

- Hospital governance, senior administrative leadership, and clinical/safety leadership must address SH by implementing a comprehensive approach
- Hospitals should set a goal date for the start of the corrective plan, with measurable quality indicators and milestones
- Governance boards and senior administrative leaders should evaluate specific budget allocations for the plan

Engage staff

- Use patient stories - in written and video form - to teach and inspire change in your staff
 - Find The Patient Safety Movement Foundation stories here: http://patient.sm/2XvRoX

Action plan

Ensure accountability

- Create a multidisciplinary team that includes:
 - Physicians
 - Pharmacists
 - Nurses
 - Diabetic educators
 - Medication safety officers
 - Case managers
 - Long-term care professionals

Create protocols and provide staff training

- Create a systematic approach to prevent SH and optimize glycemic management:
 - Identify and prioritize events
 - Raise institutional awareness
 - Compare hospitals and nursing units based on performance quality scorecards
(use harm rate for at-risk patient days: [# of events]/[# of patient days during hospital stay when an anti-diabetic agent is ordered at any time])

- Encourage nurses to enter hypoglycemia into safety event self-reporting site
- Communicate to the hospital leadership board
- Send letters to physicians and providers (from case managers)
- Educate hospital staff, providers, and patients – hospital newsletter and posters made for each hospital/nursing unit listing common risks of hypoglycemia, safer medication alternatives, and solutions to prevent hypoglycemia (e.g., “STOP Hypoglycemia!”)
- Conduct a kick-off reception for SH safety initiative
- Perform frequent monitoring of glucose levels in patients who are at risk

• Use foundational Best Practices and “Just Do Its” (Appendices A and B)
 - Create a Hypoglycemia Task Force for the hospital
 - Propose multidisciplinary diabetes safety team at each hospital
 - Adopt foundational best practices (literature-based recommendations for all hospitals)
 - Start “Just Do Its!” (or “Start Nows”) - these should be safe and reasonable interventions tested internally
 - Adopt ISMP recommendations for U-500 insulin precautions (Appendix C)

• Set restrictions for the prescribing of U-500 Regular Insulin to only specialists and under special circumstances in CPOE
• Create a checklist of precipitating and contributory factors that could lead to hypoglycemia and SH
• Develop a protocol that provides proactive carbohydrates by a standardized process (e.g., IV dextrose), with scheduled reassessment of BG and nurse-driven adjustments to prevent recurrent hypoglycemia (Griffing, 2016)

Track and analyze your progress

• Investigate SH events and collect causative factors to consider as part of the analysis tool, such as:
 - Insulin stacking
 - Wrong drug, dose, route, patient, or time of administration
 - Insufficient glucose monitoring
 - Basal or long-acting insulin regimen
 - Decreased nutritional intake
 - Event related to outpatient or emergency department medicine administration
 - Event while treating elevated potassium level
 - Glucose trend not recognized
 - High dose sliding scale insulin
 - Home regimen continued during hospitalization
 - Much lower steroid dose
 - Sulfonylurea-related hypoglycemia
 - Insulin administration and food intake not in sync
Point-of-care BG reading not linked to insulin administration
Point-of-care BG reading not in sync with food intake

- A pharmacist and/or nurse reviews analysis tool forms in a timely manner (e.g., at least within 72 hours) for causative factors and communicates findings with physicians
- Collate and report results to Medication Safety Committee and the Pharmacy and Therapeutics Committee
- Identify the interventions (evidence-based and expert opinion) that are used to resolve the most common or most harmful causative factors
- Track the interventions and create customized action plans based on the results

Report outcomes inside your organization and share best practices outside your organization

- Share best practices within hospital and to other hospitals and healthcare facilities
- Share strategies and use informed interventions on targeted floors and at-risk patients

Technology plan

These suggested practices and technologies have shown proven benefit or, in some cases, are the only known technologies for certain tasks. If you know of other options not listed here, please complete the form for the PSMF Technology Vetting Workgroup to consider:

https://patientsafetymovement.org/actionable-solutions/apss-workgroups/technology-vetting/

<table>
<thead>
<tr>
<th>System or practice</th>
<th>Available technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONC Meaningful Use Certified Electronic Health Record (EHR) System with the following capabilities:</td>
<td></td>
</tr>
<tr>
<td>• Computerized Provider Order Entry (CPOE)</td>
<td></td>
</tr>
<tr>
<td>• Drug-drug interaction check</td>
<td></td>
</tr>
<tr>
<td>• Drug-allergy interaction check</td>
<td></td>
</tr>
<tr>
<td>• Clinical Decision Support (CDS) tools</td>
<td></td>
</tr>
<tr>
<td>• Restriction settings for the prescribing of U-500 Regular Insulin to only specialists and under special circumstances in CPOE</td>
<td></td>
</tr>
<tr>
<td>Glycemic management CDS for insulin therapy recommendations, based on individual responses to insulin and designed for mitigation of all types of hypoglycemia</td>
<td>• Includes all of the following bullet points with significant additional safety features</td>
</tr>
<tr>
<td>Real-time surveillance method for informatics alerts and triggers for initiation of hypoglycemia prevention protocol</td>
<td>• “High-Risk Sulfonylurea Alert”</td>
</tr>
<tr>
<td></td>
<td>• “Hypoglycemia Risk Alert”</td>
</tr>
</tbody>
</table>
| An automated hypoglycemia event analysis tool (to discover local causes of hypoglycemia and guide future interventions) | • Quality assurance reports to audit compliance with hypoglycemia
• management goals and restriction of insulin use |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-of-care BG monitoring and reporting systems</td>
<td>Automated triggers for most common precipitating or contributory factors of hypoglycemia; and an electronic tracking system for SH events, interventions used, and clinical outcomes</td>
</tr>
<tr>
<td>A results dashboard for each nursing unit within the hospital and Best Practices used to resolve the hypoglycemic event(s)</td>
<td>FDA approved glycemic management CDS for insulin therapy recommendation, based on individual patient’s response to insulin and designed for relief of all types of hypoglycemia</td>
</tr>
<tr>
<td>FDA approved glycemic management CDS for insulin therapy recommendation, based on individual patient’s response to insulin and designed for relief of all types of hypoglycemia</td>
<td>CPOE simulation tool to quantify the risk of serious ADEs with your current system CPOE</td>
</tr>
<tr>
<td>Drug libraries in EHR systems</td>
<td>• Injectables, or comparable systems</td>
</tr>
<tr>
<td>Pharmacy Workflow Manager</td>
<td></td>
</tr>
</tbody>
</table>

Measuring outcomes

Topic 1 - Glycemic control of severe hypoglycemia
Rate of SH events (<40 mg/dL) within 12 hours of administration of insulin, or within 24 hours of administration of an anti-diabetic medication other than insulin, and no subsequent glucose value >80 mg/dL within five minutes of the low glucose event.

Outcome Measure Formula:
Harm rate for at-risk patient days: (# of events) / (# of patient days during hospital stay when an anti-diabetic medication is ordered at any time)

Numerator: Number of reported adverse drug events with harm, (as defined above) - (by class or medication)

Denominator: Number of doses administered (by medication or class of medication)

Metric recommendations
Indirect Impact (preventable rate): All patients
Direct Impact (non-preventable rate): All patients prescribed medications that could cause hypoglycemia
Lives Spared Harm:
Lives Spared Harm = (ADE Rate baseline - ADE Rate measurement) X (Doses or Adjusted Patient Days at baseline)

Lives Saved:
Lives Saved = (Lives Spared Harm) x (Mortality Rate)

Notes:
Top medication classes and triggers:
1. Insulins
2. Sulfonylureas
3. Fluoroquinolones
4. Beta blockers
5. Inappropriate timing of insulin or anti-diabetes therapy
6. Unaddressed previous hypoglycemia
7. Changes in nutritional status and regimen
8. Renal and hepatic function (Creatinine clearance changes)
9. Steroid dose (Deal et al., 2011)
10. Failure to monitor BG

Failure to monitor BG
Data Collection
SH reporting information is based on volunteer reporting and accuracy of people verifying reports, (preferably from pharmacy and the medication errors reporting and prevention (MERP) program, MERP).

Anti-diabetic medication usage information is usually collected from billing information rather than medication orders (more accurate if patient received the dose or not).

Conflicts of interest disclosure
The Patient Safety Movement Foundation partners with as many stakeholders as possible to focus on how to address patient safety challenges. The recommendations in the APSS are developed by workgroups that may include patient safety experts, healthcare technology professionals, hospital leaders, patient advocates, and medical technology industry volunteers. Some of the APSSs recommend technologies that are offered by companies involved in the Patient Safety Movement Foundation. The workgroups have concluded, based on available evidence, that these technologies work to address APSS patient safety issues. Workgroup members are required to disclose any potential conflicts of interest.

Workgroup
Co-Chairs:
Ron Jordan Chapman University School of Pharmacy
Jerika Lam Chapman University School of Pharmacy
Christopher Jerry The Emily Jerry Foundation
Members:
This list represents all contributors to this document since inception of the Actionable Patient Safety Solutions.

Hania Alim Patient Safety Movement Foundation
Peter Antevy Handtevy
Steven Barker Masimo; Patient Safety Movement Foundation
*Linda Beneze Monarch Medical Technologies
Michel Bennett Patient Safety Movement Foundation (formerly)
Laressa Bethishou Chapman University School of Pharmacy
Jim Broselow eBroselow
John Burnam Louise H. Batz Patient Safety Foundation
Mitchell Goldstein Loma Linda Medical Center
Kari Hamlin Hackensack Medical Center
Helen Haskell Mothers Against Medical Error
Soojin Jun Quorum Health
Edwin Loftin Parrish Medical Center
Ariana Longley Patient Safety Movement Foundation
Jacob Lopez Patient Safety Movement Foundation (formerly)
Olivia Lounsbury Patient Safety Movement Foundation
Anne Lyren Children’s Hospitals’ Solutions for Patient Safety
Brendan Miney Talis Clinical
Sidney Morice Lee Health
Lisa Morrise Consumers Advancing Patient Safety
Steve Mullenix National Council for Prescription Drug Programs
*Flannery Nangle Monarch Medical Technologies
Robert Nickell Enovachem
Donna Prosser Patient Safety Movement Foundation
Talia Puzantian Keck Graduate Institute
Judith Reiss Advocate
Claire Roy Patient Safety Movement Foundation
Rochelle Sandell Patient Advocate
Enrique Seoane-Vasquez Chapman University School of Pharmacy
Alex Shaffer Advocate
David Shane Lowry Rosalind Franklin University of Medicine and Science
Robin Shannon The T System
Deeba Siddiqui Hackensack Medical Center
Charles Simmons Cedars-Sinai Medical Center
Nat Sims Massachusetts General Hospital
Robert Stein Keck Graduate Institute
Laura Townsend Louise H. Batz Patient Safety Foundation
Kimberly Won Chapman University School of Pharmacy
Jason Yamaki Chapman University School of Pharmacy
Sun Yang Chapman University School of Pharmacy

Metrics Integrity:
Robin Betts Kaiser Permanente, Northern California Region

*This Workgroup member has reported a financial interest in an organization that provides a medical product or technology recommended in the Technology Plan for this APSS.

References

Schwartz, A. V., Vittinghoff, E., Sellmeyer, D. E., Feingold, K. R., Rekeneire, N. D., Strotmeyer, E. S., ... Harris, T. B. (2007). Diabetes-Related Complications, Glycemic Control, and Falls in Older
Appendix A: Summary of Foundational Best Practices (Moghissi et al., 2009)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise awareness of hypoglycemia</td>
<td>Initiatives to raise awareness on preventable harm have improved patient care</td>
</tr>
<tr>
<td>Real time analysis (48 hours)</td>
<td>• Pharmacy surveillance system provides information of when and where these events occur, but not why they occur</td>
</tr>
<tr>
<td></td>
<td>• Many hospitals have lowered harm rate using real time analysis</td>
</tr>
<tr>
<td>Create and use diabetes management team</td>
<td>AACE/ADA (American Association of Clinical Endocrinologists/American Diabetes Association) noted that a multidisciplinary steering committee of local diabetic experts can create reasonable and achievable glycemic management goals</td>
</tr>
<tr>
<td>Provide prescriber with tools to use as a dosing guide</td>
<td>• AACE/ADA suggests a systems approach for management of inpatient glycemic control</td>
</tr>
<tr>
<td></td>
<td>• Can create reasonable and achievable glycemic management goals</td>
</tr>
<tr>
<td>Nursing education process</td>
<td>• AACE/ADA noted a lack of ownership in diabetes care due to insufficient knowledge or confidence in diabetes management</td>
</tr>
<tr>
<td></td>
<td>• Ongoing education and training can improve care</td>
</tr>
</tbody>
</table>
Insulin dose timing coincide with food intake

- AACE/ADA noted many hospitals don’t coordination meal delivery and prandial insulin administration
- A systems approach can promote the coordination of glucose monitoring, insulin administration, and meal delivery, particularly during change of shifts and times of patient transfer

Improve point-of-care BG testing glucose testing with the insulin administration time

- AACE/ADA stated that bedside BG monitoring with use of POC glucose meters should be performed before meals and at bedtime in most in-patients who are eating usual meals
- Avoids routine use of correction insulin at bedtime

Use glucose management software

- Reduces hypoglycemic events

Appendix B: Just Do Its! recommendations (Milligan et al., 2014)

<table>
<thead>
<tr>
<th>Just Do It!</th>
<th>Modify insulin order set to hold insulin only with physician order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modify insulin order set to match pending electronic order set to reduce doses of bedtime sliding scale (30% reduction)</td>
</tr>
<tr>
<td></td>
<td>Modify insulin order set to avoid routine correction insulin at specific times (e.g., 0200 and 0400)</td>
</tr>
<tr>
<td></td>
<td>Modify insulin order set to match pending electronic order set to state: Notify physician when hypoglycemic event occurs (2 levels <70 mg/dL or 1 level <50 mg/dL, or >300 mg/dL)</td>
</tr>
<tr>
<td></td>
<td>Add Pharmacist and Endocrinologist on diabetes management team</td>
</tr>
</tbody>
</table>

Appendix C: Start Now: U-500 regular insulin project

Scope
Create guidelines for injectable U-500 insulin to reduce ADE preventable harm. U-500 insulin is an uncommon concentration, which can cause serious harm if given with syringes designed for U-100 insulin.

Preventable Harm
Risk potential and risk severity are both high
Resources
Pharmacist(s) and nurse(s)

Goals:
- Create standard “High Alert” or “High Hazard Medication” or restrictions for U-500 insulin at all hospitals to prevent improper dosing and harm related to hypoglycemia
- Create policy that will safeguard or restrict the use of U-500 to specialists and special circumstances

Risks and barriers
- Hospitals that do not have the medication on their formulary have not addressed patients who may use it from home
- Hospitals feel that the medication not on their formulary will protect them from ADEs - but non-formulary medications do not equal to no-risk of ADE