COVID-19 Therapies

Currently, supportive care and acute measures should be applied to patients hospitalized with COVID-19 and associated complications. These may include the following:1,2,30

- Oxygen therapy for patients who develop respiratory distress, hypoxemia, or shock
- Empiric antimicrobials in the case of sepsis or secondary pneumonia
- Ventilatory support, and conservative fluid management in the case of acute respiratory distress syndrome
- Fluid boluses and vasopressors with septic shock
- The IDSA guideline panel suggests glucocorticoids for hospitalized patients with severe COVID-19 illness (with SpO2 $\leq 94\%$ on room air, and those who require supplemental oxygen, mechanical ventilation, or ECMO). The guideline panel suggests against glucocorticoids for patients with COVID-19 without hypoxemia requiring supplemental oxygen.

Investigational therapies and vaccines

Several clinical trials are currently being performed to further the development and research of antiviral drugs against SARS-CoV-2 virus. At the present, there is no available data to support the recommendation of any of the following investigational therapies and vaccines for patients with confirmed/suspected COVID-19 infection:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Clinical Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Antiviral Agents}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Remdesivir³ | • Incorporates into nascent viral RNA chains and produces premature termination of viral RNA transcription.
• Has *in vitro* activity against SARS-CoV, MERS-CoV and some RNA viruses. | China
France
Norway
USA
International multi-center sites
https://clinicaltrials.gov/ct2/show/NCT04292730
https://clinicaltrials.gov/ct2/show/NCT04292899
https://clinicaltrials.gov/ct2/show/NCT04280705 |
| Antimalarial | From *in vitro* studies against SARS-CoV-2:
• Changes the pH at the surface of the cell membrane and inhibits the fusion of the virus to the cell membrane.
• Exerts antiviral effects by inhibiting nucleic acid | USA
https://clinicaltrials.gov/ct2/show/NCT04308668

Hydroxychloroquine⁴⁻⁷: From *in vitro* studies against SARS-CoV-2:
• Changes the pH at the surface of the cell membrane and inhibits the fusion of the virus to the cell membrane.
• Exerts antiviral effects by inhibiting nucleic acid
| Hydroxychloroquine & azithromycin\(^8,9\) | South Korea
Turkey
Spain
Mexico
|---|---|
| ▪ Hydroxychloroquine blocks viral entry by inhibiting virus/cell fusion from *in vitro* studies.
▪ Azithromycin is a macrolide antibiotic that binds to the 50S ribosomal subunit of susceptible bacteria and interferes with microbial protein synthesis. | USA
https://clinicaltrials.gov/ct2/show/NCT04334382?cond=covid19#wrapper
Brazil
Israel
https://clinicaltrials.gov/ct2/show/NCT04322123?cond=covid19
Pakistan
| **Angiotensin II Receptor Blocker (ARB)** |
Losartan\(^10-15\)
Blocks the binding of angiotensin II to the AT1 receptor subtype in many tissues. |
USA
<p>| Immunomodulating Agents | |</p>
<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Locations</th>
</tr>
</thead>
</table>
| Bevacizumab | A humanized monoclonal antibody that inhibits vascular endothelial growth factor (VEGF), a potent vascular permeability inducer. VEGF is associated with increased vascular permeability and pulmonary edema in acute lung injury and acute respiratory distress syndrome. | China and Italy
| Eculizumab | A human monoclonal antibody that binds to complement proteins of the innate immune system, thus inhibiting formation of the membrane attack complex | USA
https://www.clinicaltrials.gov/ct2/show/NCT04288713?cond=NCT04288713&draw=2&rank=1 |
| Methylprednisolone and dexamethasone | Exert anti-inflammatory activity | China
Italy
South America
Spain
| Sarilumab | A human monoclonal antibody that inhibits interleukin-6 (IL-6) pathway by binding and blocking the IL-6 receptor. | USA
<table>
<thead>
<tr>
<th>Country</th>
<th>Clinical Trial Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>International multi-center sites</td>
<td></td>
</tr>
</tbody>
</table>

Siltuximab

A human monoclonal antibody that inhibits interleukin-6 (IL-6) pathway by binding and blocking the IL-6 receptor.

Tocilizumab

A human monoclonal antibody that inhibits interleukin-6 (IL-6) pathway by binding and blocking the IL-6 receptor.

JAK (Janus kinase) Inhibitors

Baracitinib

Inhibits viral endocytosis by numb-associated kinases (NAK) → prevent cytokine storm and block early stages of viral entry and spread into host cells.

Canada

![Clinical Trial Link](https://clinicaltrials.gov/ct2/show/NCT04321993?cond=covid19)

Italy

![Clinical Trial Link](https://www.clinicaltrials.gov/ct2/show/NCT04320277)
| **Ruxolitinib**³⁶ | Inhibits viral endocytosis by numb-associated kinases (NAK) to prevent cytokine storm and block early stages of viral entry and spread into host cells. | Mexico
USA
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Bromhexine HCl**³¹ | A mucolytic drug that increases the production of serous mucus in the respiratory tract, thereby making the phlegm thinner and less viscous. The drug exerts a secretomotoric effect, allowing the cilia to transport the phlegm out of the lungs. | China
| **Camostat Mesilate**³² | Inhibits TMPRSS2, a serine protease that primes the spike protein of highly pathogenic human coronavirus (i.e., MERS-CoV and SARS-CoV) and facilitates its entry into the host cell, and blocks the spread and pathogenesis of SARS-CoV in a mouse model study. | Denmark
Germany
| **Convalescent plasma**¹⁸ | Infusing patients with antibody-rich plasma from people who have recovered from COVID-19 infection to | Colombia
Iran
<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Reference</th>
<th>Country</th>
<th>Clinical Trial Link</th>
</tr>
</thead>
</table>
| **Dapagliflozin**^{38,29} | • Inhibits sodium-glucose cotransporter 2 (SGLT2), thereby reducing reabsorption of filtered glucose, lowering the renal threshold for glucose, and increasing urinary glucose excretion.
• SGLT2 have demonstrated to have potent heart and renal-protective effects in patients with type 2 diabetes, heart failure and/or chronic kidney disease and may protect the vital organ systems in the setting of COVID-19
May improve diabetic control as well which may also improve response | USA | <https://clinicaltrials.gov/ct2/show/NCT04325672?cond=covid19> |
| **Tradipitant**^{33,34} | Inhibits the substance P neurokinin-1 receptor, which is involved in the neuroinflammatory processes that lead to significant lung injury following viral infections. | USA | <https://clinicaltrials.gov/ct2/show/NCT04326426?term=tradipitant&draw=2&rank=2> |
| **Vitamin D**¹⁹⁻²³ | • A hormone precursor produced by our own body with the help of sunlight. | Spain | <https://clinicaltrials.gov/ct2/show/NCT04334005?cond=covid19> |
• Has an important role on adaptive immunity and cellular differentiation, maturation and proliferation of several immune cells.

Vaccines

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>Description</th>
<th>Country</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA-1273</td>
<td>Encodes a prefusion-stabilized form of the S (Spike) protein, which is part of the viral envelope. Results in transcription of certain coronavirus-S-like proteins, which are the proteins that the virus uses to gain entry into the lung epithelial cells. Antibodies are then formed by those vaccinated against the S protein.</td>
<td>USA</td>
<td>https://clinicaltrials.gov/ct2/show/NCT04283461?term=mRNA-1273&cond=COVID-19&entry=US&state=US%3AWA&draw=2&rank=1</td>
</tr>
</tbody>
</table>

Netherlands
infections in *in vitro* and *in vivo* studies.

References

1. www.who.int/health-topics/coronavirus
9. French study on combination HCQ and azithromycin
17. **Effective Treatment of Severe COVID-19 Patients with Tocilizumab**
18. **Recommendations for Investigational COVID-19 Convalescent Plasma**